首页> 外文OA文献 >Harmonic oscillators coupled by springs: discrete solutions as a Wigner Quantum System
【2h】

Harmonic oscillators coupled by springs: discrete solutions as a Wigner Quantum System

机译:弹簧耦合的谐波振荡器:作为维格纳量子系统的离散解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a quantum system consisting of a one-dimensional chain of M identical harmonic oscillators with natural frequency $\omega$, coupled by means of springs. Such systems have been studied before, and appear in various models. In this paper, we approach the system as a Wigner Quantum System, not imposing the canonical commutation relations, but using instead weaker relations following from the compatibility of Hamilton's equations and the Heisenberg equations. In such a setting, the quantum system allows solutions in a finite-dimensional Hilbert space, with a discrete spectrum for all physical operators. We show that a class of solutions can be obtained using generators of the Lie superalgebra gl(1|M). Then we study the properties and spectra of the physical operators in a class of unitary representations of gl(1|M). These properties are both interesting and intriguing. In particular, we can give a complete analysis of the eigenvalues of the Hamiltonian and of the position and momentum operators (including multiplicities). We also study probability distributions of position operators when the quantum system is in a stationary state, and the effect of the position of one oscillator on the positions of the remaining oscillators in the chain.
机译:我们考虑一个量子系统,该系统由一维M个相同的谐波振荡器组成,其固有频率为\\ omega $,并通过弹簧耦合。这样的系统以前已经研究过,并且出现在各种模型中。在本文中,我们将系统视为维格纳量子系统,而不是强加标准的换向关系,而是根据汉密尔顿方程和海森堡方程的相容性,使用更弱的关系。在这种情况下,量子系统允许在有限维希尔伯特空间中求解,并为所有物理算子提供离散频谱。我们表明,可以使用李超代数gl(1 | M)的生成器来获得一类解。然后,我们以gl(1 | M)的一元表示形式研究物理算符的性质和谱。这些特性既有趣又有趣。特别是,我们可以对哈密顿量以及位置和动量算符(包括多重性)的特征值进行完整的分析。我们还研究了量子系统处于稳态时位置算子的概率分布,以及一个振荡器的位置对链中其余振荡器的位置的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号